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We test a method used to correct the box-counting estimate of fractal dimensions that is suitable only
when a finite number of points is allowed. This method is based on the existing relations between the
moments of cell counts for the sampling point distribution and the moments of point distribution for the
underlying fractal structure. After a formal derivation of such relations, we apply them to fractal point
distributions having different resolutions, dimensions, and numbers of sampling points. We find that a
dilute sampling of a fractal structure often pollutes the scaling behavior, as revealed by a direct box-
counting analysis. On the other hand, our correction procedure allows one to enlarge the scaling range
up to more than one decade and also to recover the expected fractal dimension value.

PACS number(s): 05.45.+b, 47.53.+n, 98.62.Py

I. INTRODUCTION

Statistical analysis of real data samples based on fractal
concepts have been shown to be an extremely useful ap-
proach in different physical contexts, in order to properly
investigate the scaling properties of a given point distri-
bution. Since the formalization by Mandelbrot [1] of the
concept of fractal structure, many applications have been
proposed, ranging from the study of the distribution of
galaxies in the universe [1-7], to the intermittent
behavior in turbulent flows [8,9], to the time series
analysis [10-15].

A fundamental quantity that characterizes a fractal
structure is the so-called fractal dimension. Mandelbrot
defined a fractal as “a mathematical object whose fractal
(Hausdorff) dimension is strictly larger than its topologi-
cal dimension” [1]. Therefore, for a fractal distribution
of points embedded in a three-dimensional ambient space,
the topological dimension is D=0, and the fractal di-
mension D, must be 0 <Dy =3. In order to better under-
stand the meaning of the fractal dimension, let us consid-
er a point distribution and suppose to cover it with a set
of boxes of size r. For a scale-invariant structure, we ex-
pect that in the limit »—O the number of nonempty
boxes scales as

N,,(r)°<r_D0 . (1)

Here the scaling index D, is defined as the box-counting,
or capacity, dimension, which in general gives a close es-
timate of the Hausdorff dimension. According to Eq. (1),
D, depends only on the number of nonempty boxes, thus
dealing only with the geometry of the distribution. How-
ever, we are interested in recovering the correct cluster-
ing properties (i.e., how many points are in each box),
characterized by the behavior of the generalized fractal
dimensions (see Sec. II).
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Note, however, that while a rigorous fractal extends its
self-similarity from arbitrarily small up to arbitrarily
large scales, physical systems develop self-similarity only
in finite scale ranges. An example of this is represented
in the cosmological context by the galaxy distribution. In
this case, gravitational force naturally generates fractal
behavior on the small scale of nonlinear dynamics [16],
while on a large scale the homogeneity of the galaxy dis-
tribution is observed. Furthermore, the point distribu-
tions one usually deals with often suffer due to intrinsic
biases. For instance, if a measurement device is able to
detect only signals exceeding a given intensity value,
threshold effects destroy self-similarity at large scales, ac-
cording to the so-called multiscaling prescription [17].
Furthermore, while the formal definition of a fractal di-
mension is given in the limit of infinitesimally small
scales, in all practical cases one deals with a finite number
of points, so that only a finite scale range can be probed.
In fact, at very small scales, all the boxes contain at most
only one particle, so that N,(r) coincides with the total
number of points. In this regime, increasing the size of
the boxes does not significantly change N, (r), so that, ac-
cording to Eq. (1), it is Dy=~0, which is just the topologi-
cal dimension of each single point. For all these reasons,
a number of different dimensional estimators have been
introduced, which relies on different approximations to
the “true” fractal dimension (e.g., Ref. [18], and refer-
ences therein). Due to such approximations, these
methods suffer due to a number of shortcomings which
depend on the dimensionality and on the sampling accu-
racy of the analyzed structure.

In this paper we address the problem of treating the
effects of undersampling in the determination of the clus-
tering scaling properties, when only a limited number of
points is allowed. We discuss a suitable procedure for en-
larging the scale range of the detected self-similarity, and
for recovering the correct scaling behavior from a poor
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point sample, under the assumption that it represents a
Poissonian sampling of an underlying fractal structure.
A more general treatment of the same problem has al-
ready been discussed in Ref. [19]. However, the present
analysis will elucidate several aspects concerning the re-
covering of the background fractal structure in the pres-
ence of a limited number of points. Furthermore, our ap-
proach is also different from that presented in Ref. [19],
and clearly shows the underlying connection between
ideal and sampled fractal structures. Our results permit
us to check whether the detected absence of self-
similarity is intrinsic to the system under analysis or if it
is a spurious product of undersampling over an otherwise
fractal structure.

II. STATISTICAL BACKGROUND

In order to account for the clustering of a point distri-
bution, let us consider a family {A;}, of N (r) cells of size
rli=1,...,N.(r)], which completely covers the fractal
structure. Then, if du(x) is defined as a local probability
measure over the fractal structure, then the coarse-
grained probability

xi(n= [, du(x) 2)

gives the fraction of mass, i.e. of the total number of
points contained inside the cell volume A;. Therefore, if
p(x) is the probability density function (PDF) for the y
variable, its moment of order g reads

qu()(q)=fd)(x"p()(). (3)

Therefore, the statistics of the fractal can be described by
the moment-generating function M (¢), which is defined
as the Laplace transform of the PDF, according to

M= [dyp(eX=(e) . @)

In this way, the moments m, are the coefficients of the
McLaurin expansion,

o m _diM (1)

m =421

M= —L9 .
qéo q! ! dat? |-

(5)

The multifractal spectrum of Renyi dimensions [20] is
determined by the scaling of the m, moments:
1 logm,(r)

D, = li . 6
a q—lrl—r»r}) logr ©

Note that generalized dimensions of positive order g
mostly weight the cells having a high probability mea-
sure, so that they account for the scaling inside the over-
dense parts of the distribution. On the other hand, the
g <0 tail deals with the underdensities. In this sense, the
spectrum of Renyi multifractal dimensions gives a
comprehensive description of the clustering, other than
that of the geometry, of a fractal structure. Under gen-
eral conditions, it is possible to demonstrate that the
shape of the D, curve is not completely arbitrary, but
rather is a nonincreasing function of g. A particularly
simple case occurs when D, is constant and a single scal-
ing index completely describes the statistics. In this case,
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the structure is called monofractal. See Ref. [21] for a
technical introduction to multifractals.

Although the D, dimensional spectrum can be defined
for any real g, the m; moments provided by the McLau-
rin expansion of M (¢) deal only with non-negative integer
q¢’s. However, it is possible to show that the M (¢) gen-
erating function completely specifies the whole set of D,
values (e.g., Refs. [22] and [23]). Here we will restrict our
attention only to integer ¢ =2, so that Eq. (5) can be tak-
en as the starting point for our implementation.

III. CORRECTING THE BOX-COUNTING ALGORITHM

Although the probability moments m, and the corre-
sponding generating function M (¢) characterize the frac-
tal as a mathematical structure, in practical estimates of
fractal dimensions one usually deals with a finite number
of points, which represents a sampling of the underlying
“true” structure. In this context, the box-counting
method represents a classical approach to estimate the
fractal dimension, and is based on the definition (6) of
Renyi indices. For a distribution of a total number N, of
points, we define the box-counting partition function

(N9),

Z(r,q)=N_(r)
rq r N

) (7

where N.(r) is as before the total number of boxes, and
(N17), is the gth order moment for the count of points
within boxes of size r. According to Eq. (6), for a fractal
distribution, we expect that

Z(rg)ar® P (8)
and the multifractal dimension spectrum is recovered
from a log-log linear regression of the partition function
in the scale range where a pure power-law shape is
detected.

However, it is clear that sampling a fractal structure
with a finite number of points allows only an approximate
estimate of the “true” dimension. Therefore, a suitable
prescription should be devised to recover it from the scal-
ing analysis of a limited data set. To this aim, let us con-
sider the PDF for a Poisson point distribution (e.g., Ref.
[24]):

p)=3 I—VL!ye"XaD(x—N) . ©)

N=0

In the above expression, ¥ is the average value of the
coarse-grained probability y, while the Dirac §-function
accounts for the discrete nature of the distribution and
constrains it to take only non-negative integer values.
According to Eq. (4), the corresponding moment-
generating function becomes

M (t)=exp[x(e'—1)] (10)

and the expression M (t)=e'X, expected for a uniform
continuous field, is recovered after substituting t —>e’—1.
Therefore, the effect of the discrete sampling is accounted
for by this change of variable in the functional depen-
dence of the moment-generating function. Accordingly,
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under the assumption that a given point distribution
represents a Poissonian sampling of an underlying struc-
ture, it is straightforward to recognize (see, e.g., Ref. [25])
that the generating function of the moments of the
discrete sampling, M 4. (1), is connected to that [M ()]
of the underlying structure according to

My ()=M(e'—1). (11)

Equation (11) represents the basic relation which con-
nects the “true” statistics to those of the sampled struc-
ture. In fact, by successively differentiating the above re-
lation the { N7) moments can be expressed order by or-
der in term of the m, moments. At the first four integer
q values, it is

(N)=m1, (N2)=ml+m2 ,

q

(12)
(N»)=m +3m,+m;, (N*)=m,+Tm,+6m;+m, ,

and more complicated expressions follow at higher or-
ders. Following Egs. (12), it is easy to obtain recursively
the values of the “true” moments m, from the measured
(N79), so that the correct fractal dimension can be
recovered (see Eq. (8) in Ref. [19]).

We note that the same set of Egs. (12) can also be ap-
plied to correct the scaling detected by the correlation-
integral method. In this case, the (N?), quantities
represent the moments of counts of neighbors within the
distance r from a point belonging to the set. Its applica-
tion in the cosmological context to the analysis of the dis-
tribution of galaxy clusters [26] has shown it to provide
reliable dimension estimates.

Grassberger [19] devised a general prescription to
correct dimensional estimates based on box-counting and
correlation-integral methods for any real g value. How-
ever, our method should be considered as an alternative
approach, to derive corrections to dimensional estimates
due to finite statistics. In Sec. IV we will test in detail the
reliability and robustness of this method, when applied to
different fractal point distributions, generated by using
different algorithms, and having different dimensions,
sampling rate, and resolution.

IV. RESULTS

In order to test the reliability of the correction pro-
cedure described in Sec. III, we apply it to a priori known
fractal point distributions, generated by means of the S-
model algorithm [27,28], as well as of the Henon map
[29].

As for the B model, in order to generate a fractal em-
bedded in a three-dimensional ambient space, let us start
with a parent cube with side L, and break it into 23
parent subcubes having side L, =L, /2. After n breaking
iterations, we generated a total number M =23" of small
cubes, each having size L, =L, /2". Let us assign to each
cube a probability p to survive after each breaking step,
and continue the cascading. Therefore, the number of ac-
tive cubes after n iterations is a random variable, having
mean {(m )=pM. In the limit of an infinite number of
iterations, it is easy to show that the distribution of sur-
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vived object is a monofractal structure, with dimension

k
Dy= lim log(mk) _log(m) _ logpM ’ 13)
k—o log2 log2 log2

k being the iteration order. From the above formula, for
p =1 all the cubes survive and Dy=3, as expected for a
homogeneous, space-filling distribution. In general,
lower and lower p values correspond to more and more
clustered fractals, having a progressively lower dimen-
sion. A further interesting possibility occurs when the
probability p depends on the scale L (i.e., on the cascad-
ing iteration). In this case, the resulting structure
displays different scaling properties at different scale
ranges, or no scaling at all. From an operative point of
view, the limit of infinite iteractions cannot be achieved
for a real distribution generated by means of a computer
algorithm; usually one stops after a given number of
iterations and associates a point with each active survived
object. This simple model has been shown to be quite
useful for modeling the fractal properties of the galaxy
distribution [28].

According to the prescription of the S model, we gen-
erated different fractal point distributions. The distribu-
tion (a) has N,=128000 points, obtained with three
homogeneity iterations with p =1, and eight fractal itera-
tions with p =1 corresponding to a fractal dimension
D =1. Therefore, the scale at which the distribution be-
comes homogeneous is + of the whole box size, while the
smallest resolution scale is 1/2!'! of L,. The distribution
(b) has the same dimension and scaling regimes of the
first one, except that we stop the cascading at the eight
iteration. The resulting number of points is N, =32 000.
Taking fewer iteration steps clearly decreases the small-
scale resolution with which we generate the fractal distri-
bution, and allows us to check the effect of this on the
efficiency of the Poissonian corrections, introduced in
Sec. III. In order also to investigate the effect of taking
different fractal dimensions, we also generated a distribu-
tion (c), with one filling iteration and eight iteration with
p=+ that forces D =2. The resulting total number of
points is N, =115 000. For each of these structures, with
the corrected and noncorrected box-counting algorithms
we analyzed several randomly selected subsamples with
varying number of points: N, =32000, N,=5000, and
N;=500.

We also generated a point distribution obtained from a
Henon recursive map, with parameters ¢ =1.4 and
b =0.3, iterated 100000 times, extracting N,=1000
points with a Poissonian sampling.

In Fig. 1 we plot the results of the analysis for g =2, 3,
and 4 (from left to right) for the distribution (a) with N,
points, as well as for the distribution (b) with the same
number of points. Note that in the first case the distribu-
tion represents a Poissonian sampling of the whole struc-
ture. The lower part of each panel shows the correspond-
ing moments of cell count, and the upper part the result-
ing local dimension obtained by a log-log linear regres-
sion on the moment slope. With this kind of plot the flat-
tening of the local dimension corresponds to the detec-
tion of a scaling (fractal) range. Filled and open circles
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FIG. 1. The box-counting fractal analysis for the (a) and (b) scale-dependent fractal distributions (see text) with N, =32 000 points.
From left to right we report the results for ¢ =2, 3, and 4. The lower panels are for the cell-count moments, and the upper panels are
for the corresponding local dimension, obtained from a five-point log-log linear regression on the { N?) shape. Filled circles are for
the noncorrected analysis of the (a) distribution, the open circles for the corrected analysis of the same distribution, and open trian-
gles are for the corrected analysis of lower resolution (b) distribution. The reliability of the correction when applied to a high-
resolution structure, and its failure when trying to correct a low-resolution distribution, are apparent.

are for the (a) distribution and represent noncorrected
and corrected values, respectively. The open triangles
are for the corrected box-counting analysis of the (b) dis-
tribution. From this plot, the reliability of introducing
the Poissonian corrections in the box-counting estimate
of the generalized fractal dimensions in the high-
resolution structure is apparent; after correcting, the
scale range in which the local dimension remains flat is
increased by more than a decade. On the other hand, the
effects of correction destroy the scaling for lower resolu-
tion structure. This is not surprising, since in this case
the distribution does not represent a Poissonian sampling
of a richer structure. Therefore, correcting for Poissoni-

N,=5000

an undersampling amounts to working out the noise,
which is present below the resolution scale, with a subse-
quent increase of the local dimension to the D =3 value.
The noncorrected analysis of distribution (b) would of
course show discreteness at small scales, but it is
“structural,” since it is related to the limited number of
iterations performed in the 8 model.

In Fig. 2 we show the same analysis for the distribution
(a), but for the subsample with N,=5000 points. The
correction still recovers the scaling and the correct frac-
tal dimension, especially for ¢ =2. On the contrary, the
noncorrected analysis shows evidence of discreteness
effect that lowers the measured dimension value and com-
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FIG. 2. The same as in Fig. 1 but only for the (a) distribution with N, = 5000 points. Note the reliability of the correction to recov-
er the correct scaling, despite the fact that poor statistics completely pollute the scaling in the uncorrected analysis.
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FIG. 3. The effect of taking randomly selected subsamples with different dilution factors on the (c) distribution. Only the results
for ¢ =2 are shown. Again the correction recovers the scaling behavior over a one decade scale range. Only for the poorest sample
is the local dimension affected by noise, although the moment { N2) recovers an overall correct shape.

pletely masquerades any evidence of scaling behavior.
Once more, this result supports the reliability of subtract-
ing the discreteness contributions from the measured cell
count moments according to Egs. (12), especially for di-
luted distributions, which otherwise do not show any evi-
dence of fractality.

Figure 3 reports the results for the D, =2 distributions
with N =32000, 5000, and 500 points, for ¢ =2 only.
The correct value of D =2 and an extension of the scal-
ing regime are again obtained. Note that for N =5000
points no evidence of a scaling regime is shown without
the use of this correction. The lack of such a statistic be-
comes dramatic when only 500 points are analyzed; in
this case, no scaling at all is shown without the correc-
tion, while after correcting some marginal evidence indi-
cates that the local dimension takes the correct values,

despite the large dispersion due to the limited statistics.
In Fig. 4 we report results for the analysis of the distri-
bution sampled from the Hénon map. Also in this case,
the recovery of the scaling regime is confirmed, despite
the low sampling rate of the underlying fractal structure.
On the basis of these results, we conclude that the pro-
cedure described in Sec. III to correct the box-counting
fractal dimensions for Poissonian sampling is a rather re-
liable procedure in order to verify whether the absence of
scaling is intrinsic to the distribution or is only an effect
of poor statistics. Using a fractal model (the 8 model)
with known fractal properties, an extension of the scaling
regime ranging from half to one decade has been always
achieved, while also recovering the expected value of the
local dimension. A Hénon undersampled distribution has
shown the same improvement in detecting the scaling re-
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FIG. 4. The same as in Fig. 2, for distribution (d). The correction is reliable in this case, as well. Note that the sampling rate is re-

markably low (5&;).
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gime. Even in the presence of a rather heavy undersam-
pling, precise hints about the behavior of the fractal na-
ture of the point distribution are achieved. We point out
that this method is also able to discriminate between a
distribution which represents a Poissonian sam-
pling of an underlying highly resolved fractal structure,
and one which samples a low-resolution structure. In the
second case, applying the correction at scales near to that
of the limiting resolution leads only to the detection of
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noise, which translates into an increase of the small-scale
local dimension.
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